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INTRODUCTION

The context in which statistical process control
methods are employed has changed dramatically over
the past few decades. Of course, the traditional applica-
tions remain important. But increasingly networked
sensors—thermo couples, pressure gages, flow meters
and even video cameras—are connected to powerful
computers running sophisticated software to monitor
complex processes. In this modern environment, indivi-
dual observations arrive one by one at whatever sampling
rate we choose, every second, minute, hour, or day. In
this context, the classical Shewhart chart is not always
so useful. Charts designed for sequential use, such as
the individuals moving range chart, the cumulative sum
(Cusum) chart, or the exponentially weighted moving
average (EWMA) chart are often more appropriate.

In the application of each of these standard charts,
it is assumed that the individual observations are sta-
tistically independent. However, the more frequently
we sample a process, the more likely it is the observa-
tions are serially correlated. Now, some of the assump-
tions we make such as normality of the data are
relatively unimportant, but independence is not. Serial
correlation can have profound effects on the perfor-
mance of a control chart. Indeed, positive autocorrela-
tion, the most common form of serial correlation in
industrial processes, may completely alter the perfor-
mance of a control chart and must be dealt with appro-
priately. In this column, we provide an example of a
serially correlated process and demonstrate what can

be done to modify the standard charts to make them
work.

EXAMPLE: TEMPERATURE CONTROL OF

A CERAMIC FURNACE

In a recent consulting engagement with a large
ceramics manufacturer, an engineer despairingly
declared that the statistical process control methods
he was taught as part of a Six Sigma program were use-
less. The methods, he explained, gave completely ridi-
culous answers. When applying a regular individual’s
control chart to a steady process exhibiting only a
small and, from an engineering point of view, comple-
tely tolerable amount of variation, the process was
pronounced out of control all the time.

We will consider 80 consecutive hourly tempera-
ture readings zt; t ¼ 1; . . . ; 80 from a thermo couple
placed inside the large ceramics furnace. See Appendix
for a listing of the data. This 80 hour time segment,
shown as time series plot in Figure 1, was selected
because it represented a stable period that the process
engineers wanted to use as a baseline for good process
performance.

The three sigma control limits for an individuals
control chart are computed as

Upper Control Limit ðUCLÞ ¼ �zzþ 3
MR

d2
ð1Þ

Centerline ¼ �zz

Lower Control Limit ðLCLÞ ¼ �zz� 3
MR

d2

where �zz ¼ n�1
P

zt and MR is the average of moving
ranges, MR, typically computed from a moving win-
dow of m observations, see e.g. Montgomery (2001).

�Edited by Søren Bisgaard
Address correspondence to Søren Bisgaard, Eugene

M. Isenberg School of Management, University of Massa-
chusetts Amherst.

Quality Engineering, 17:481–489, 2005

Copyright # Taylor & Francis Inc.

ISSN: 0898-2112 print=1532-4222 online

DOI: 10.1081/QEN-200068575

481



If m ¼ 2, the default value in many software packages
including MINITAB, the moving ranges are the abso-
lute values of the differences between successive obser-
vations MRt ¼ zt � zt�1j j and d2 ¼ 1:128. The reason
for using a moving range with m ¼ 2 to estimate the
process variability is that it provides a good estimate
of the short-term process variability, even if the process
mean should be slowly drifting over time.

An individuals control chart based on a moving
range ofm ¼ 2 for the 80 consecutive hourly temperature
readings is shown in Figure 2. We notice that despite its
stable appearance, the process is seriously out of control.
As explained above, this was the reason the process con-
trol engineer concluded that statistical process control
was useless for his process. It is also easy to see that his
objections were sensible and should receive serious con-
sideration. Indeed, his process did not change muchmore
than plus and minus one degree over this three day
period. Further, considering the large size of this furnace,
any attempt to counteract such small changes whenever
the control chart provided an out of control signal would

likely cause more variability, not less. Deming called this
tampering.

So, what is the problem? The problem, of course,
is not with the individuals control chart per se, but
with its application to this process. We will discuss this
in more detail in the next section, but the observations
in this case seriously violate the important assumption
of statistical independence. Indeed, the keen observer
will notice that Figure 1 shows a slow moving wavy
pattern rather than being completely random. Given
the physics of the circumstances, this is to be expected.
With a sampling rate of one observation per hour of
the temperature of something extremely large such as
a furnace, the temperature at time t and that of one
hour later at time tþ 1, are obviously going to be
related. Things don’t change that fast!

Another chart that is popular for the control of
industrial processes where the individual observations
arrive one by one is the Exponentially Weighted
Moving Average (EWMA) chart, see e.g. Box and
Luceno (1997). The EWMA, ~yyt, is computed sequentially

Figure 2. An individuals control chart of the 80 consecutive hourly temperature observations from a ceramic furnace.

Figure 1. A times series plot of 80 consecutive hourly temperature observations from a ceramic furnace.
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as a linear interpolation between the present observation
zt and ~yyt�1, the previous EWMA

~yyt ¼ kzt þ ð1� kÞ~yyt�1; ð2Þ

where k is a constant 0 � k � 1. Hunter (1986) has
shown that for independent and normally distributed
data, the control limits for the EWMA ~yyt are given by

UCLt ¼ �zzþ 3r̂r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

�
1� ð1� kÞ2t

�r

CL ¼ �zz

LCLt ¼ �zzþ 3r̂r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

�
1� ð1� kÞ2t

�r
;

ð3Þ

where the estimate of the process variability, r̂r, typically
is estimated using the same method as for the individuals
control chart.

Figure 3 shows an EWMA for the furnace data
with the typical default value k ¼ 0:2. We see that
the process also with this chart appears to be out of
control. Again, we attribute this to the observations
not being independent, rather than the process not be
stationary and in control.

SERIAL CORRELATION

The basis for a process being in statistical control
is that its joint probability distribution is stationary.
It is not, as some mistakenly may think, that the obser-
vations are independent. For practical purposes, we
interpret stationarity to imply that the first two
moments, the mean, the variance, and the cross corre-
lation between observations from different points in
time, are constant. This is sometimes referred to as
weak stationarity; see Box et al. (1994) for a precise
definition. Although there are some rigorous statistical
tests that can be performed, often, a visual inspection
of the time series plot will provide important informa-
tion as to whether the process is stationary or not. In
our case, since the time series plot does not raise ser-
ious concerns regarding the stationarity of the data,
we will proceed with our analysis. Once we fit the time
series model, we will come back to the issue of sta-
tionarity and provide a test based on the parameter
estimates of the proposed model.

For the present process we can readily see that the
observations are correlated over time. Figure 4 shows a
panel of four plots: (i) the temperatures zt versus the
lag one temperatures, zt�1, (ii) the temperatures, zt

Figure 3. An EWMA of hourly temperature observations from the ceramic furnace.

Figure 4. The correlation between observations (i) one time unit apart, (ii) two time units apart, (iii) three time units apart,
and (iv) four time units apart.
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versus the lag 2 temperatures, zt�2, (iii) the tempera-
tures, zt, versus the lag 3 temperatures, zt�3, and (iv)
the temperatures, zt versus and the lag 4 temperatures,
zt�4. From these four plots, we see that observations
one time unit apart are highly positively correlated,
observations two time units apart are also correlated,
but less so, and after three and four time lags, they
are more or less uncorrelated. This kind of correlation
is called autocorrelation. An alternative representation
of the autocorrelation is provided in Figure 5. In this
plot, only the correlation coefficients for different lags
are presented. Specifically, the correlation shown as
scatter plots in Figure 4 (i) between zt and zt�1 is about
0.7, and the correlation between zt and zt�2 shown in
Figure 4 (ii) is about 0.3. These lag 1 and lag 2 autocor-
relations are shown in Figure 5 as the two first bars of
the length 0.7 and 0.3 respectively. Further, the two
dotted horizontal lines in Figure 5 indicate confidence
intervals around zero. Thus the lag 1 autocorrelation is
clearly significantly different from zero, and the lag 2
autocorrelation is borderline significant.

A TIMESERIES MODEL OF THE

FURNACE DATA

Stationary autocorrelated process data can often
be modeled via an Autoregressive Moving Average

(ARMA) time series model, see Box et al. (1994).
The identification of the particular model within this
general class of models is determined by looking at
the Autocorrelation Function (ACF) and the Partial
Autocorrelation Function (PACF).

To appreciate what the PACF is, consider a pth
order autoregressive process AR(p). This model is like
a regular regression equation except we regress the cur-
rent observations zt on the past p values, zt�1; . . . ; zt�p.
That is, if ~zzt ¼ zt � l is the current observation’s devia-
tion from the process mean, l, then

~zzt ¼ /1~zzt�1 þ /2~zzt�2 þ � � � þ /p~zzt�p þ at ð4Þ

where at is assumed to be independent white noise
errors, at � Nð0; r2aÞ. The kth order partial autocorre-
lation measures the additional correlation between ~zzt
and ~zzt�k, after adjustments have been made for the
intermediate observations ~zzt�1;~zzt�2; . . . ;~zzt�kþ1. In
other words, the lag k partial autocorrelation can be
thought of as the last regression coefficient /kk if we
progressively for k ¼ 1; 2; . . . fit regression equations

~zzt ¼ /k1~zzt�1 þ � � � þ /kk~zzt�k þ at ð5Þ

to the data. Thus, by the time we fit too many terms, the
partial regression coefficients /kk will approximately be
zero. For example, if we fit an AR(2) model to data that

Figure 5. The autocorrelation function of the furnace temperature.

Figure 6. The partial autocorrelation function for the furnace data.
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truly follows an AR(2) model, then the regression coeffi-
cients /̂/kk for lag k ¼ 3; 4; . . . will be zero.

In the present case the ACF in Figure 5 looks like
a damped sine function. The PACF in Figure 6 shows
that the two first partial autocorrelation coefficients
are larger than the two standard error limits, and hence
deemed significant. After that, the PACF cuts off. To
identify the particular type of ARMA model we use
Table 3.3 of Box et al. (1994). From that table we
see that a pattern of an exponentially decaying or sine
wave decaying ACF and a PACF that cuts off after lag
2 suggest an AR (2) model. Thus, we tentatively fit the
following AR (2) model

~zzt ¼ /1~zzt�1 þ /2~zzt�2 þ at� ð6Þ:

This model can also be written directly in terms of
the data zt, which is how MINITAB parameterizes
stationary AR models. Thus, if we use the substitution
~zzt ¼ zt � l we get

zt � l ¼ /1ðzt�1 � lÞ þ /2ðzt�2 � lÞ þ at

zt ¼ l� /1l� /2lþ /1zt�1 þ /2zt�2 þ at

zt ¼ constant þ /1zt�1 þ /2zt�2 þ at;

ð7Þ

where the constant ¼ l� /1l� /2l or l ¼ constant=
ð1� /1 � /2Þ:

The fitting of an AR(2) time series model requires
non-linear iterative estimation, but is easily facilitated
by many software packages including MINITAB 13.3
used here. Table 1 provides the final estimates of the
parameters.

For this AR(2) model to be stationary, it is
required that the coefficients satisfy the relations,

/2 þ /1 < 1

/2 � /1 < 1 ð8Þ
�1 < /2 < 1:

Thus with /̂/2 þ /̂/1 ¼ 0:61, /̂/2 � /̂/1 ¼ �1:35 and
/̂/2 ¼ �0:3722, we conclude that the process is indeed
stationary and therefore, as far as we are concerned,

in statistical control. (For more information, see Box
et al., 1994)

To check the model, we show in Figure 7 a normal
plot of the residuals, and in Figure 8 a plot of the residuals
in time order. Both plots indicate that the model fits the
data well. The ACF and the PACF of the residuals pro-
vide a further check. Ideally, if the model fits well, all
serial correlation would have been removed from the
data and the residuals behave like white noise. Figures 9
and 10 show the ACF and the PACF for the residuals
after fitting the AR (2) model to the furnace data. Both
the ACF and the PACF are essentially zero for all lags.

Now that we have identified the furnace tempera-
ture to be a stationary AR(2) process and confirmed
that the model fits the data well, we can compute the
process’s stationary variance. The variance inflation
factor (see Box et al., (1994)) for an AR(2) process with
/1 ¼ 0:9824 and /2 ¼ �0:3722 is

r2z ¼
1� /2

1þ /2

� �
r2a

fð1� /2Þ2 � /2
1g

¼ 1þ 0:3722

1� 0:3722

� �
r2a

fð1þ 0:3722Þ2 � 0:98242g
¼ 2:38146r2a:

ð9Þ

Thus, the variance of the furnace temperature pro-
cess is approximately 2.4 times larger than the residual
variability, r2a. This partly explains why the individuals
control chart in Figure 2 underestimated the true pro-
cess variability, and hence gave so many false alarms.
Further, from Table 1 we have r̂r2a ¼ 0:1403. Thus,
r̂rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:38146� 0:1403

p
ffi 0:5780. This compares well

with the estimate of the overall sample standard

deviation, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðzt � �zzÞ2=ð80� 1Þ
q

ffi 0:5685.

AN ALTERNATIVE INDIVIDUALS CONTROL

CHART FOR THE FURNACE PROCESS

A number of considerations go into setting up a
control chart. One is to reduce the number of false
alarms; we do not want the chart to signal that the pro-
cess is out of control when it is not. Another considera-
tion is to make the chart sensitive enough to get a
quick, valid alarm to a real change in the process.
Unfortunately, these two considerations are to some
degree at cross-purposes. When we try to reduce the
false alarm rate, we desensitize the control chart and
hence, delay its ability to signal fast when a real change
has happened. Another more practical consideration is
that the chart should be easy for the user to interpret.
In the present context, it is desirable that the control

Table 1
Estimated coefficients for an AR(2) process

Coefficient Estimate
Standard
error t-value p-value

/̂/1 0.9824 0.1062 9.25 0.000
/̂/2 �0.3722 0.1066 �3.49 0.001

Constant 615.836 0.042
l̂l 1579.79 0.11
r̂r2a 0.1403
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chart shows the actual temperature, because that car-
ries with it important information for the engineer.

Given these considerations, we suggest using an indi-
viduals control chart with appropriately inflated control
limits. The inflated control limits are computed as

UCL¼�zzþ3r̂rz¼1579:79þ3�0:5780¼1581:52

Centerline¼�zz¼1579:79 ð10Þ
LCL¼�zz�3r̂rz¼1579:79�3�0:5780¼1578:06:

Figure 11 shows the modified individuals control
chart for the furnace process. Note that the process

now appears to be in statistical control. A major reason
for recommending a modified individuals control chart
is that it provides comfort to the control engineer because
it shows the actual temperatures backed with control lim-
its that have physical meaning. Admittedly, this chart is
perhaps not as sensitive and as quick to detect a real
change as other types of control charts. However, in
the current context, the overriding concern was to avoid
that the control engineers dismissed the use of control
charts all together.

In the above discussion, we have outlined how
to provide a theoretical foundation for inflating the

Figure 7. Normal plot of residuals after fitting an AR(2) model to the furnace data.

Figure 8. Time series plot of the residuals.
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control limits on an individuals control chart via
ARMA time series modeling of a serially correlated
but stationary process. We have done so because the
control engineer was unhappy with our more practical

first suggestion, which simply was to multiply the esti-
mated sigma based on the moving range (�0:30) by a
factor of two. As it turns out, this suggestion was very
nearly what we ended up using based on the time series

Figure 10. The PACF of the residuals after fitting an AR (2) model to the furnace data.

Figure 9. The ACF of the residuals after fitting an AR(2) model to the furnace data.

Figure 11. An individuals control chart for the furnace process with inflated limits to accommodate for the serial correlation.
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approach. However, rather than simply guessing the
inflation factor, a better alternative is to use the overall
sample standard deviation for a sufficiently long, good,
and stable period. In the current case, using the 80 obser-
vations as such a period, we would have concluded that
r̂rz � 0:57, and again we would have been very close to
what we found using the ARMA time series approach.

ANOTHER ALTERNATIVE USING RESIDUALS

In using the inflated limits for the individuals con-
trol chart, we emphasized the importance of reducing
the false alarm rate, and making the chart easy to inter-
pret. However, this approach desensitizes the chart and
will likely increase the average run length (ARL) to sig-
nal an alarm in case of a real change. An alternative
approach, first suggested by Berthouex, Hunter, and
Pallesen (1978), see also Montgomery (2001), is to
use a standard control chart intended for independent
observations applied to the residuals after fitting a time
series model. In the present case, the residuals, âat, are
computed by rewriting the time series model as
~zzt � /̂/1~zzt�1 � /̂/2~zzt�2 ¼ âat, or in terms of the actual
observations as,

âat ¼ ðzt � l̂lÞ � /̂/1ðzt�1 � l̂lÞ � /̂/2ðzt�2 � l̂lÞ
¼ zt � /̂/1zt�1 � /̂/2zt�2 � l̂lð1� /̂/1 � /̂/2Þ:

ð11Þ

For the current process, we could use an indivi-
duals control chart, a cumulative sum (CUSUM) chart
or an EWMA chart. The residuals are not on a mean-
ingful scale. Hence the practical interpretation
argument for using the individuals control chart no

longer applies. We therefore suggest using an EWMA
chart, as show in Figure 12. This chart, computed with
the default k ¼ 0:2, and forcing the mean to be zero,
now shows that the process is in statistical control.

CONCLUSION

In modern applications of statistical process
control, autocorrelation is increasingly becoming a fact
of life and must not be ignored. In this article, we have
demonstrated with an industrial example how to detect
autocorrelation, illustrated its consequences for a few
standard control charts, and showed a couple of ways
to alleviate the problem. As demonstrated, modern
software packages such as MINITAB, make it rela-
tively easy to perform the computations needed when
dealing with auto-correlated processes and using
ARMA time series models. By providing the data,
we hope this detailed example will serve as a hands-
on introduction to the use of time series approaches
to statistical process control.

ACKNOWLEDGMENTS

Søren Bisgaard was supported by the Isenberg
Program for Technology Management, the Isenberg
School of Management, University of Massachusetts
Amherst, and by the European Community (EC)
through the Thematic Network–Pro–ENBIS–EC
contract number G6RT-CT-200þ -05059. MINITAB
was used for all the computations.

Figure 12. EWMA of the residuals after fitting an AR(2) model to the furnace data.
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APPENDIX

Table A.1
Furnace temperature data: 80 consecutive hourly observations reading horizontally line-by-line

1578.71 1578.79 1579.38 1579.36 1579.83 1580.13 1578.95
1579.18 1579.52 1579.72 1580.11 1580.41 1580.77 1580.05
1579.53 1579.00 1579.12 1579.13 1579.39 1579.73 1580.12
1580.23 1580.25 1579.80 1579.72 1579.49 1579.22 1579.03
1579.76 1580.19 1580.17 1580.22 1580.44 1580.71 1579.91
1579.48 1579.82 1580.34 1580.56 1580.05 1579.63 1578.82
1578.59 1578.56 1579.56 1579.46 1579.59 1579.66 1579.89
1580.03 1579.76 1579.84 1580.41 1580.30 1580.17 1579.81
1579.71 1579.77 1580.16 1580.38 1580.18 1579.59 1580.06
1581.21 1580.89 1580.82 1580.48 1579.97 1579.64 1580.42
1580.06 1580.12 1579.92 1579.57 1579.56 1579.40 1578.90
1578.50 1579.30 1579.93
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